Anisotropic Impact Sensitivity and Shock Induced Plasticity of TKX- 50 (Dihydroxylammonium 5,5′-bis(tetrazole)-1,1′-diolate) Single Crystals: From Large-Scale Molecular Dynamics Simulations

نویسندگان

  • Qi An
  • Tao Cheng
  • William A Goddard
  • Sergey V. Zybin
چکیده

Dihydroxylammonium 5,5′-bis(tetrazole)-1,1′-diolate (TKX-50) is a newly synthesized energetic material with high energy storage, low impact sensitivity, and low toxicity. These features make it a viable candidate to replace such commonly used energetic materials as RDX and CL-20 in the next generation of explosives. Sensitivity determines the engineering application of energetic materials (EMs) and has been widely studied for various EMs. To understand the origin of the anisotropic sensitivity and properties of this new synthesized EM, we report a flexible classical force field for TKX-50 developed to reproduce the molecular properties (geometry, vibrational frequencies and torsion barriers) and the crystal properties (cell parameters and lattice energy). We then used this force field in molecular dynamics (MD) simulations to predict such thermodynamic and mechanical properties as isothermal compressibility, thermal expansion, elastic moduli, and heat capacity. Furthermore, we carried out large scale (∼a half million atoms) MD simulations to investigate the mechanical response to shocks in the [100], [010] and [001] directions. The predicted Hugoniot elastic limits (HELs) are 6.1 GPa for [100], 14.2 GPa for [010] and 9.1 GPa for [001] shocks. Thus, single crystal TKX-50 shows anisotropic impact sensitivity with [010] as the most sensitive direction and [100] as least sensitive. The plastic deformations in shock compression along the [100] direction primary arise from the (001)/[210] and (010)/[001] slip systems of. For the [010] shock, the primary slip systems are (100)/[021] and (001)/[210]. However, no obvious slip system was observed for [001] shock.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamic simulations on TKX-50/RDX cocrystal.

Dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) is a newly synthesized energetic material with excellent comprehensive properties. Cyclotrimethylenetrinitramine (RDX) is currently one of the most widely used energetic materials in the world. TKX-50 and RDX supercell models and TKX-50/RDX cocrystal model were constructed based on their crystal cell parameters and the formation mechani...

متن کامل

Initial Steps of Thermal Decomposition of Dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate Crystals from Quantum Mechanics

Dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) is a recently synthesized energetic material (EM) with most promising performance, including high energy content, high density, low sensitivity, and low toxicity. TKX-50 forms an ionic crystal in which the unit cell contains two bistetrazole dianions {c-((NO)N3C)-[c-(CN3(NO)], formal charge of −2} and four hydroxylammonium (NH3OH) catio...

متن کامل

Initial mechanisms for the decomposition of electronically excited energetic salts: TKX-50 and MAD-X1.

Decomposition of energetic salts TKX-50 and MAD-X1 (dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate and dihydroxylammonium 3,3'-dinitro-5,5'-bis-1,2,4-triazole-1,1'-diol, respectively), following electronic state excitation, is investigated both experimentally and theoretically. The NO and N2 molecules are observed as initial decomposition products from the two materials subsequent to UV exci...

متن کامل

Molecular dynamic simulations on TKX-50/HMX cocrystal

Dihydroxylammonium 5,50-bistetrazole-1,10-diolate (TKX-50) is a newly synthesized explosive with excellent comprehensive properties. Cyclotetramethylenetetranitramine (HMX) is currently one of the highest energy explosives used around the world. TKX-50/HMX cocrystal can improve the defects of TKX-50 and HMX and vastly expand their application scope. TKX-50 and HMX supercell structures and TKX-5...

متن کامل

ماده منفجره TKX-50

Increasing the explosion power simultaneously reduction of explosive sensitivity caused to preparing new species of explosives. One of the considerable compounds in this field is dihydroxyl ammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Evaluation of explosion properties of this material shows that its explosion efficiency is equal with CL-20. TKX-50 is compatible with most of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015